GraphQL API
Understanding the core concepts of the GraphQL API.
In our API, each SQL table is reflected as a set of GraphQL types. At a high level, tables become types and columns/foreign keys become fields on those types.
By default, PostgreSQL table and column names are not inflected when reflecting GraphQL names. For example, an account_holder
table has GraphQL type name account_holder
. In cases where SQL entities are named using snake_case
, enable inflection to match GraphQL/Javascript conventions e.g. account_holder
-> AccountHolder
.
Individual table, column, and relationship names may also be manually overridden.
Primary Keys (Required)
Every table must have a primary key for it to be exposed in the GraphQL schema. For example, the following Blog
table will be available in the GraphQL schema as blogCollection
since it has a primary key named id
:
1234create table "Blog"( id serial primary key, name varchar(255) not null,);
But the following table will not be exposed because it doesn't have a primary key:
1234create table "Blog"( id int, name varchar(255) not null,);
QueryType
The Query
type is the entrypoint for all read access into the graph.
Node
The node
interface allows for retrieving records that are uniquely identifiable by a globally unique nodeId: ID!
field. For more information about nodeId, see nodeId.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null, "updatedAt" timestamp not null);
GraphQL Types
1234567"""The root type for querying data"""type Query { """Retrieve a record by its `ID`""" node(nodeId: ID!): Node}
To query the node
interface effectively, use inline fragments to specify which fields to return for each type.
Example
123456789101112{ node( nodeId: "WyJwdWJsaWMiLCAiYmxvZyIsIDFd" ) { nodeId # Inline fragment for `Blog` type ... on Blog { name description } }}
Collections
Each table has top level entry in the Query
type for selecting records from that table. Collections return a connection type and can be paginated, filtered, and sorted using the available arguments.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null, "updatedAt" timestamp not null);
GraphQL Types
123456789101112131415161718192021222324252627282930"""The root type for querying data"""type Query { """A pagable collection of type `Blog`""" blogCollection( """Query the first `n` records in the collection""" first: Int """Query the last `n` records in the collection""" last: Int """Query values in the collection before the provided cursor""" before: Cursor """Query values in the collection after the provided cursor""" after: Cursor """ Skip n values from the after cursor. Alternative to cursor pagination. Backward pagination not supported. """ offset: Int """Filters to apply to the results set when querying from the collection""" filter: BlogFilter """Sort order to apply to the collection""" orderBy: [BlogOrderBy!] ): BlogConnection}
Connection types are the primary interface to returning records from a collection.
Connections wrap a result set with some additional metadata.
123456789101112type BlogConnection { # Count of all records matching the *filter* criteria totalCount: Int! # Pagination metadata pageInfo: PageInfo! # Result set edges: [BlogEdge!]!}
The totalCount
field is disabled by default because it can be expensive on large tables. To enable it use a comment directive
Pagination
Keyset Pagination
Paginating forwards and backwards through collections is handled using the first
, last
, before
, and after
parameters, following the relay spec.
1234567891011121314151617181920type Query { blogCollection( """Query the first `n` records in the collection""" first: Int """Query the last `n` records in the collection""" last: Int """Query values in the collection before the provided cursor""" before: Cursor """Query values in the collection after the provided cursor""" after: Cursor ...truncated... ): BlogConnection}
Metadata relating to the current page of a result set is available on the pageInfo
field of the connection type returned from a collection.
1234567891011121314type PageInfo { # unique identifier of the first record within the query startCursor: String # unique identifier of the last record within the query endCursor: String # is another page of content available hasNextPage: Boolean! # is another page of content available hasPreviousPage: Boolean!}
To paginate forward in the collection, use the first
and after
arguments. To retrieve the first page, the after
argument should be null or absent.
Example
12345678910111213141516171819{ blogCollection( first: 2, after: null ) { pageInfo { startCursor endCursor hasPreviousPage hasNextPage } edges { cursor node { id } } }}
To retrieve the next page, provide the cursor value from data.blogCollection.pageInfo.endCursor
to the after
argument of another query.
1234567{ blogCollection( first: 2, after: "WzJd" ) { ...truncated...}
once the collection has been fully enumerated, data.blogConnection.pageInfo.hasNextPage
returns false.
To paginate backwards through a collection, repeat the process substituting first
-> last
, after
-> before
, hasNextPage
-> hasPreviousPage
Offset Pagination
In addition to keyset pagination, collections may also be paged using first
and offset
, which operates like SQL's limit
and offset
to skip offset
number of records in the results.
offset
based pagination becomes inefficient the offset
value increases. For this reason, prefer cursor based pagination where possible.
1234567{ blogCollection( first: 2, offset: 2 ) { ...truncated...}
Filtering
To filter the result set, use the filter
argument.
1234567891011type Query { blogCollection( """Filters to apply to the results set when querying from the collection""" filter: BlogFilter ...truncated... ): BlogConnection}
Where the <Table>Filter
type enumerates filterable fields and their associated <Type>Filter
.
123456789101112input BlogFilter { nodeId: IDFilter id: IntFilter name: StringFilter description: StringFilter tags: StringListFilter createdAt: DatetimeFilter updatedAt: DatetimeFilter and: [BlogFilter!] or: [BlogFilter!] not: BlogFilter}
The following list shows the operators that may be available on <Type>Filter
types.
Operator | Description |
---|---|
eq | Equal To |
neq | Not Equal To |
gt | Greater Than |
gte | Greater Than Or Equal To |
in | Contained by Value List |
lt | Less Than |
lte | Less Than Or Equal To |
is | Null or Not Null |
startsWith | Starts with prefix |
like | Pattern Match. '%' as wildcard |
ilike | Pattern Match. '%' as wildcard. Case Insensitive |
regex | POSIX Regular Expression Match |
iregex | POSIX Regular Expression Match. Case Insensitive |
contains | Contains. Applies to array columns only. |
containedBy | Contained in. Applies to array columns only. |
overlaps | Overlap (have points in common). Applies to array columns only. |
Not all operators are available on every <Type>Filter
type. For example, UUIDFilter
only supports eq
and neq
because UUID
s are not ordered.
Example: simple
123456789101112{ blogCollection( filter: {id: {lt: 3}}, ) { edges { cursor node { id } } }}
Example: array column
The contains
filter is used to return results where all the elements in the input array appear in the array column.
contains
Filter Query"
123456789101112131415{ blogCollection( filter: {tags: {contains: ["tech", "innovation"]}}, ) { edges { cursor node { id name tags createdAt } } }}
contains
Filter Result"
1234567891011121314151617181920212223242526{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation"] }, "cursor": "WzFd" }, { "node": { "id": 2, "name": "A: Blog 2", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation", "entrepreneurship"] }, "cursor": "WzJd" } ] } }}
The contains
filter can also accept a single scalar.
contains
Filter with Scalar Query"
123456789101112131415{ blogCollection( filter: {tags: {contains: "tech"}}, ) { edges { cursor node { id name tags createdAt } } }}
contains
Filter with Scalar Result"
1234567891011121314151617181920212223242526{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation"] }, "cursor": "WzFd" }, { "node": { "id": 2, "name": "A: Blog 2", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation", "entrepreneurship"] }, "cursor": "WzJd" } ] } }}
The containedBy
filter is used to return results where every element of the array column appears in the input array.
containedBy
Filter Query"
123456789101112131415{ blogCollection( filter: {tags: {containedBy: ["entrepreneurship", "innovation", "tech"]}}, ) { edges { cursor node { id name tags createdAt } } }}
containedBy
Filter Result"
1234567891011121314151617181920212223242526{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation"] }, "cursor": "WzFd" }, { "node": { "id": 3, "name": "A: Blog 3", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["innovation", "entrepreneurship"] }, "cursor": "WzNd" } ] } }}
The containedBy
filter can also accept a single scalar. In this case, only results where the only element in the array column is the input scalar are returned.
containedBy
Filter with Scalar Query"
123456789101112131415{ blogCollection( filter: {tags: {containedBy: "travel"}}, ) { edges { cursor node { id name tags createdAt } } }}
containedBy
Filter with Scalar Result"
1234567891011121314151617{ "data": { "blogCollection": { "edges": [ { "node": { "id": 4, "name": "A: Blog 4", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["travel"] }, "cursor": "WzPd" } ] } }}
The overlaps
filter is used to return results where the array column and the input array have at least one element in common.
overlaps
Filter Query"
123456789101112131415{ blogCollection( filter: {tags: {overlaps: ["tech", "travel"]}}, ) { edges { cursor node { id name tags createdAt } } }}
overlaps
Filter Result"
1234567891011121314151617181920212223242526272829303132333435{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation"] }, "cursor": "WzFd" }, { "node": { "id": 2, "name": "A: Blog 2", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["tech", "innovation", "entrepreneurship"] }, "cursor": "WzJd" }, { "node": { "id": 4, "name": "A: Blog 4", "createdAt": "2023-07-24T04:01:09.882781", "tags": ["travel"] }, "cursor": "WzPd" } ] } }}
Example: and/or
Multiple filters can be combined with and
, or
and not
operators. The and
and or
operators accept a list of <Type>Filter
.
and
Filter Query"
1234567891011121314151617181920{ blogCollection( filter: { and: [ {id: {eq: 1}} {name: {eq: "A: Blog 1"}} ] } ) { edges { cursor node { id name description createdAt } } }}
and
Filter Result"
1234567891011121314151617{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "description": "a desc1" }, "cursor": "WzFd" } ] } }}
or
Filter Query"
1234567891011121314151617181920{ blogCollection( filter: { or: [ {id: {eq: 1}} {name: {eq: "A: Blog 2"}} ] } ) { edges { cursor node { id name description createdAt } } }}
or
Filter Result"
1234567891011121314151617181920212223242526{ "data": { "blogCollection": { "edges": [ { "node": { "id": 1, "name": "A: Blog 1", "createdAt": "2023-07-24T04:01:09.882781", "description": "a desc1" }, "cursor": "WzFd" }, { "node": { "id": 2, "name": "A: Blog 2", "createdAt": "2023-07-24T04:01:09.882781", "description": "a desc2" }, "cursor": "WzJd" } ] } }}
Example: not
not
accepts a single <Type>Filter
.
not
Filter Query"
1234567891011121314151617{ blogCollection( filter: { not: {id: {eq: 1}} } ) { edges { cursor node { id name description createdAt } } }}
not
Filter Result"
1234567891011121314151617181920212223242526272829303132333435{ "data": { "blogCollection": { "edges": [ { "node": { "id": 2, "name": "A: Blog 2", "createdAt": "2023-07-24T04:01:09.882781", "description": "a desc2" }, "cursor": "WzJd" }, { "node": { "id": 3, "name": "A: Blog 3", "createdAt": "2023-07-24T04:01:09.882781", "description": "a desc3" }, "cursor": "WzNd" }, { "node": { "id": 4, "name": "B: Blog 3", "createdAt": "2023-07-24T04:01:09.882781", "description": "b desc1" }, "cursor": "WzRd" } ] } }}
Example: nested composition
The and
, or
and not
operators can be arbitrarily nested inside each other.
123456789101112131415161718192021{ blogCollection( filter: { or: [ { id: { eq: 1 } } { id: { eq: 2 } } { and: [{ id: { eq: 3 }, not: { name: { eq: "A: Blog 2" } } }] } ] } ) { edges { cursor node { id name description createdAt } } }}
Example: empty
Empty filters are ignored, i.e. they behave as if the operator was not specified at all.
1234567891011121314151617{ blogCollection( filter: { and: [], or: [], not: {} } ) { edges { cursor node { id name description createdAt } } }}
Example: implicit and
Multiple column filters at the same level will be implicitly combined with boolean and
. In the following example the id: {eq: 1}
and name: {eq: "A: Blog 1"}
will be and
ed.
123456789101112131415161718192021{ blogCollection( filter: { # Equivalent to not: { and: [{id: {eq: 1}}, {name: {eq: "A: Blog 1"}}]} not: { id: {eq: 1} name: {eq: "A: Blog 1"} } } ) { edges { cursor node { id name description createdAt } } }}
This means that an and
filter can be often be simplified. In the following example all queries are equivalent and produce the same result.
and
Query"
123456789101112131415161718192021{ blogCollection( filter: { and: [ {id: {gt: 0}} {id: {lt: 2}} {name: {eq: "A: Blog 1"}} ] } ) { edges { cursor node { id name description createdAt } } }}
Be aware that the above simplification only works for the and
operator. If you try it with an or
operator it will behave like an and
.
123456789101112131415161718192021{ blogCollection( filter: { # This is really an `and` in `or`'s clothing or: { id: {eq: 1} name: {eq: "A: Blog 2"} } } ) { edges { cursor node { id name description createdAt } } }}
This is because according to the rules of GraphQL list input coercion, if a value passed to an input of list type is not a list, then it is coerced to a list of a single item. So in the above example or: {id: {eq: 1}, name: {eq: "A: Blog 2}}
will be coerced into or: [{id: {eq: 1}, name: {eq: "A: Blog 2}}]
which is equivalent to or: [and: [{id: {eq: 1}}, {name: {eq: "A: Blog 2}}}]
due to implicit and
ing.
Avoid naming your columns and
, or
or not
. If you do, the corresponding filter operator will not be available for use.
The and
, or
and not
operators also work with update and delete mutations.
Ordering
The default order of results is defined by the underlying table's primary key column in ascending order. That default can be overridden by passing an array of <Table>OrderBy
to the collection's orderBy
argument.
1234567891011type Query { blogCollection( """Sort order to apply to the collection""" orderBy: [BlogOrderBy!] ...truncated... ): BlogConnection}
Example
1234567891011{ blogCollection( orderBy: [{id: DescNullsLast}] ) { edges { node { id } } }}
Note, only one key value pair may be provided to each element of the input array. For example, [{name: AscNullsLast}, {id: AscNullFirst}]
is valid. Passing multiple key value pairs in a single element of the input array e.g. [{name: AscNullsLast, id: AscNullFirst}]
, is invalid.
MutationType
The Mutation
type is the entrypoint for mutations/edits.
Each table has top level entry in the Mutation
type for inserting insertInto<Table>Collection
, updating update<Table>Collection
and deleting deleteFrom<Table>Collection
.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null default now(), "updatedAt" timestamp);
1234567891011121314151617181920212223242526272829303132333435363738394041"""The root type for creating and mutating data"""type Mutation { """Adds one or more `BlogInsertResponse` records to the collection""" insertIntoBlogCollection( """Records to add to the Blog collection""" objects: [BlogInsertInput!]! ): BlogInsertResponse """Updates zero or more records in the collection""" updateBlogCollection( """ Fields that are set will be updated for all records matching the `filter` """ set: BlogUpdateInput! """Restricts the mutation's impact to records matching the critera""" filter: BlogFilter """ The maximum number of records in the collection permitted to be affected """ atMost: Int! = 1 ): BlogUpdateResponse! """Deletes zero or more records from the collection""" deleteFromBlogCollection( """Restricts the mutation's impact to records matching the critera""" filter: BlogFilter """ The maximum number of records in the collection permitted to be affected """ atMost: Int! = 1 ): BlogDeleteResponse!}
Insert
To add records to a collection, use the insertInto<Table>Collection
field on the Mutation
type.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null default now(), "updatedAt" timestamp);
GraphQL Types
123456789101112"""The root type for creating and mutating data"""type Mutation { """Adds one or more `BlogInsertResponse` records to the collection""" insertIntoBlogCollection( """Records to add to the Blog collection""" objects: [BlogInsertInput!]! ): BlogInsertResponse}
Where elements in the objects
array are inserted into the underlying table.
Example
1234567891011121314mutation { insertIntoBlogCollection( objects: [ {name: "foo"}, {name: "bar"}, ] ) { affectedCount records { id name } }}
Update
To update records in a collection, use the update<Table>Collection
field on the Mutation
type.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null default now(), "updatedAt" timestamp);
GraphQL Types
123456789101112131415161718192021"""The root type for creating and mutating data"""type Mutation { """Updates zero or more records in the collection""" updateBlogCollection( """ Fields that are set will be updated for all records matching the `filter` """ set: BlogUpdateInput! """Restricts the mutation's impact to records matching the critera""" filter: BlogFilter """ The maximum number of records in the collection permitted to be affected """ atMost: Int! = 1 ): BlogUpdateResponse!}
Where the set
argument is a key value pair describing the values to update, filter
controls which records should be updated, and atMost
restricts the maximum number of records that may be impacted. If the number of records impacted by the mutation exceeds the atMost
parameter the operation will return an error.
Example
123456789101112mutation { updateBlogCollection( set: {name: "baz"} filter: {id: {eq: 1}} ) { affectedCount records { id name } }}
Delete
To remove records from a collection, use the deleteFrom<Table>Collection
field on the Mutation
type.
SQL Setup
1234567create table "Blog"( id serial primary key, name varchar(255) not null, description varchar(255), "createdAt" timestamp not null default now(), "updatedAt" timestamp);
GraphQL Types
12345678910111213141516"""The root type for creating and mutating data"""type Mutation { """Deletes zero or more records from the collection""" deleteFromBlogCollection( """Restricts the mutation's impact to records matching the critera""" filter: BlogFilter """ The maximum number of records in the collection permitted to be affected """ atMost: Int! = 1 ): BlogDeleteResponse!}
Where filter
controls which records should be deleted and atMost
restricts the maximum number of records that may be deleted. If the number of records impacted by the mutation exceeds the atMost
parameter the operation will return an error.
Example
1234567891011mutation { deleteFromBlogCollection( filter: {id: {eq: 1}} ) { affectedCount records { id name } }}
Concepts
nodeId
The base GraphQL type for every table with a primary key is automatically assigned a nodeId: ID!
field. That value, can be passed to the node entrypoint of the Query
type to retrieve its other fields. nodeId
may also be used as a caching key.
relay support
By default relay expects the
ID
field for types to have the name
id
. pg_graphql uses
nodeId
by default to avoid conflicting with user defined
id
columns. You can configure relay to work with pg_graphql's
nodeId
field with relay's
nodeInterfaceIdField
option. More info available
.
SQL Setup
1234create table "Blog"( id serial primary key, name varchar(255) not null);
GraphQL Types
12345type Blog { nodeId: ID! # this field id: Int! name: String!}
Relationships
Relationships between collections in the Graph are derived from foreign keys.
One-to-Many
A foreign key on table A referencing table B defines a one-to-many relationship from table A to table B.
SQL Setup
1234567891011create table "Blog"( id serial primary key, name varchar(255) not null);create table "BlogPost"( id serial primary key, "blogId" integer not null references "Blog"(id), title varchar(255) not null, body varchar(10000));
GraphQL Types
1234567891011121314151617181920212223242526272829303132333435type Blog { # globally unique identifier nodeId: ID! id: Int! name: String! description: String blogPostCollection( """Query the first `n` records in the collection""" first: Int """Query the last `n` records in the collection""" last: Int """Query values in the collection before the provided cursor""" before: Cursor """Query values in the collection after the provided cursor""" after: Cursor """ Skip n values from the after cursor. Alternative to cursor pagination. Backward pagination not supported. """ offset: Int """Filters to apply to the results set when querying from the collection""" filter: BlogPostFilter """Sort order to apply to the collection""" orderBy: [BlogPostOrderBy!] ): BlogPostConnection}
Where blogPostCollection
exposes the full Query
interface to BlogPost
s.
Example
1234567891011121314151617{ blogCollection { edges { node { name blogPostCollection { edges { node { id title } } } } } }}
Many-to-One
A foreign key on table A referencing table B defines a many-to-one relationship from table B to table A.
SQL Setup
1234567891011create table "Blog"( id serial primary key, name varchar(255) not null);create table "BlogPost"( id serial primary key, "blogId" integer not null references "Blog"(id), title varchar(255) not null, body varchar(10000));
GraphQL Types
123456789type BlogPost { nodeId: ID! id: Int! blogId: Int! title: String! body: String blog: Blog}
Where blog
exposes the Blog
record associated with the BlogPost
.
123456789101112{ blogPostCollection { edges { node { title blog { name } } } }}
One-to-One
A one-to-one relationship is defined by a foreign key on table A referencing table B where the columns making up the foreign key on table A are unique.
SQL Setup
12345678910create table "EmailAddress"( id serial primary key, address text unique not null);create table "Employee"( id serial primary key, name text not null, email_address_id int unique references "EmailAddress"(id));
GraphQL Types
1234567type Employee { nodeId: ID! id: Int! name: String! emailAddressId: Int emailAddress: EmailAddress}
Example
12345678910111213141516171819{ "data": { "employeeCollection": { "edges": [ { "node": { "name": "Foo Barington", "emailAddress": { "address": "foo@bar.com", "employee": { "name": "Foo Barington" } } } } ] } }}
Custom Scalars
Due to differences among the types supported by PostgreSQL, JSON, and GraphQL, pg_graphql
adds several new Scalar types to handle PostgreSQL builtins that require special handling.
JSON
pg_graphql
serializes json
and jsonb
data types as String
under the custom scalar name JSON
.
1scalar JSON
Example
Given the setup
1234567create table "User"( id bigserial primary key, config jsonb);insert into "User"(config)values (jsonb_build_object('palette', 'dark-mode'));
The query
123456789{ userCollection { edges { node { config } } }}
The returns the following data. Note that config
is serialized as a string
12345678910111213{ "data": { "userCollection": { "edges": [ { "node": { "config": "{\"palette\": \"dark-mode\"}" } } ] } }}
Use serialized JSON strings when updating or inserting JSON
fields via the GraphQL API.
JSON does not currently support filtering.
BigInt
PostgreSQL bigint
and bigserial
types are 64 bit integers. In contrast, JSON supports 32 bit integers.
Since PostgreSQL bigint
values may be outside the min/max range allowed by JSON, they are represented in the GraphQL schema as BigInt
s and values are serialized as strings.
123456789101112scalar BigIntinput BigIntFilter { eq: BigInt gt: BigInt gte: BigInt in: [BigInt!] lt: BigInt lte: BigInt neq: BigInt is: FilterIs}
Example
Given the setup
1234567create table "Person"( id bigserial primary key, name text);insert into "Person"(name)values ('J. Bazworth');
The query
12345678910{ personCollection { edges { node { id name } } }}
The returns the following data. Note that id
is serialized as a string
1234567891011121314{ "data": { "personCollection": { "edges": [ { "node": { "id": "1", "name": "Foo Barington", } } ] } }}
BigFloat
PostgreSQL's numeric
type supports arbitrary precision floating point values. JSON's float
is limited to 64-bit precision.
Since a PostgreSQL numeric
may require more precision than can be handled by JSON, numeric
types are represented in the GraphQL schema as BigFloat
and values are serialized as strings.
123456789101112scalar BigFloatinput BigFloatFilter { eq: BigFloat gt: BigFloat gte: BigFloat in: [BigFloat!] lt: BigFloat lte: BigFloat neq: BigFloat is: FilterIs}
Example
Given the SQL setup
1234567create table "GeneralLedger"( id serial primary key, amount numeric(10,2));insert into "GeneralLedger"(amount)values (22.15);
The query
12345678910{ generalLedgerCollection { edges { node { id amount } } }}
The returns the following data. Note that amount
is serialized as a string
1234567891011121314{ "data": { "generalLedgerCollection": { "edges": [ { "node": { "id": 1, "amount": "22.15", } } ] } }}
Opaque
PostgreSQL's type system is extensible and not all types handle all operations e.g. filtering with like
. To account for these, pg_graphql
introduces a scalar Opaque
type. The Opaque
type uses PostgreSQL's to_json
method to serialize values. That allows complex or unknown types to be included in the schema by delegating handling to the client.
123456scalar Opaqueinput OpaqueFilter { eq: Opaque is: FilterIs}