Storage

Working with Vector Indexes

Create, manage, and optimize vector indexes for efficient similarity search.


Vector indexes organize embeddings within a bucket with consistent dimensions and distance metrics. Each index defines how similarity searches are performed across your vectors.

Understanding vector indexes

An index specifies:

  • Index Name - Unique identifier within the bucket
  • Dimension - Size of vector embeddings (e.g., 1536 for OpenAI)
  • Distance Metric - Similarity calculation method (cosine, euclidean, or L2)
  • Data Type - Vector format (currently float32)

Think of an index as a table in a traditional database. It has a schema (dimension) and a query strategy (distance metric).

Creating indexes

Via Dashboard

  1. Open your vector bucket in the Supabase Dashboard.
  2. Click Create Index.
  3. Enter an index name (e.g., documents-openai).
  4. Set the dimension matching your embeddings (e.g., 1536 for OpenAI's text-embedding-3-small).
  5. Select the distance metric (cosine, euclidean, or l2).
  6. Click Create.

Via JavaScript SDK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import { } from '@supabase/supabase-js'const = ('https://your-project.supabase.co', 'your-service-key')const = ...('embeddings')// Create an indexconst { , } = await .({ : 'documents-openai', : 'float32', : 1536, : 'cosine',})if () { .('Error creating index:', )} else { .('Index created:', )}

Choosing the right metric

Most modern embedding models work best with cosine distance:

  • OpenAI (text-embedding-3-small, text-embedding-3-large): Cosine
  • Cohere (embed-english-v3.0): Cosine
  • Hugging Face (sentence-transformers): Cosine
  • Google (text-embedding-004): Cosine
  • Llama 2 embeddings: Cosine or L2

Tip: Check your embedding model's documentation for the recommended distance metric.

Important: Creating an index with incorrect dimensions will cause insert and query operations to fail.

Managing multiple indexes

Create multiple indexes for different use cases or embedding models:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
const bucket = supabase.storage.vectors.from('embeddings')// Index for OpenAI embeddingsawait bucket.createIndex({ indexName: 'documents-openai', dimension: 1536, distanceMetric: 'cosine', dataType: 'float32',})// Index for Cohere embeddingsawait bucket.createIndex({ indexName: 'documents-cohere', dimension: 1024, distanceMetric: 'cosine', dataType: 'float32',})// Index for different use caseawait bucket.createIndex({ indexName: 'images-openai', dimension: 1536, distanceMetric: 'cosine', dataType: 'float32',})// List all indexesconst { data: indexes } = await bucket.listIndexes()console.log('All indexes:', indexes)

Use cases for multiple indexes

  • Different embedding models - Store vectors from OpenAI, Cohere, and local models separately
  • Different domains - Maintain separate indexes for documents, images, products, etc.
  • A/B testing - Compare different embedding models side-by-side
  • Multi-language - Keep language-specific embeddings separate

Listing and inspecting indexes

List all indexes in a bucket

1
2
3
4
5
6
7
8
9
10
11
const bucket = supabase.storage.vectors.from('embeddings')const { data: indexes, error } = await bucket.listIndexes()if (!error) { indexes?.forEach((index) => { console.log(`Index: ${index.name}`) console.log(` Dimension: ${index.dimension}`) console.log(` Distance: ${index.distanceMetric}`) })}

Get index details

1
2
3
4
5
6
7
8
const { data: indexDetails, error } = await bucket.getIndex('documents-openai')if (!error && indexDetails) { console.log(`Index: ${indexDetails.name}`) console.log(`Created at: ${indexDetails.createdAt}`) console.log(`Dimension: ${indexDetails.dimension}`) console.log(`Distance metric: ${indexDetails.distanceMetric}`)}

Deleting indexes

Delete an index to free storage space:

1
2
3
4
5
6
7
8
9
const bucket = supabase.storage.vectors.from('embeddings')const { error } = await bucket.deleteIndex('documents-openai')if (error) { console.error('Error deleting index:', error)} else { console.log('Index deleted successfully')}

Before deleting an index

Warning: Deleting an index is permanent and cannot be undone.

  • Backup important data - Export vectors before deletion if needed
  • Update applications - Ensure no code references the deleted index
  • Check dependencies - Verify no active queries use the index
  • Plan the deletion - Do this during low-traffic periods

Immutable properties

Once created, these properties cannot be changed:

  • Dimension - Must create new index with different dimension
  • Distance metric - Cannot change after creation
  • Data type - Currently only float32 supported

Optimizing index performance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Good - Appropriate batch sizeconst batch = vectors.slice(0, 250)await index.putVectors({ vectors: batch })// Good - Filter metadata before queryconst { data } = await index.queryVectors({ queryVector, topK: 5, filter: { category: 'electronics' },})// Avoid - Single vector insertsfor (const vector of vectors) { await index.putVectors({ vectors: [vector] })}// Avoid - Returning unnecessary dataconst { data } = await index.queryVectors({ queryVector, topK: 1000, // Too many results returnData: true, // Include large embeddings})

Next steps