AI & Vectors

Generate image captions using Hugging Face

Use the Hugging Face Inference API to make calls to 100,000+ Machine Learning models from Supabase Edge Functions.


We can combine Hugging Face with Supabase Storage and Database Webhooks to automatically caption for any image we upload to a storage bucket.

About Hugging Face

Hugging Face is the collaboration platform for the machine learning community.

Huggingface.js provides a convenient way to make calls to 100,000+ Machine Learning models, making it easy to incorporate AI functionality into your Supabase Edge Functions.

Setup

  • Open your Supabase project dashboard or create a new project.
  • Create a new bucket called images.
  • Generate TypeScript types from remote Database.
  • Create a new Database table called image_caption.
    • Create id column of type uuid which references storage.objects.id.
    • Create a caption column of type text.
  • Regenerate TypeScript types to include new image_caption table.
  • Deploy the function to Supabase: supabase functions deploy huggingface-image-captioning.
  • Create the Database Webhook in the Supabase Dashboard to trigger the huggingface-image-captioning function anytime a record is added to the storage.objects table.

Generate TypeScript types

To generate the types.ts file for the storage and public schemas, run the following command in the terminal:

1
supabase gen types typescript --project-id=your-project-ref --schema=storage,public > supabase/functions/huggingface-image-captioning/types.ts

Code

Find the complete code on GitHub.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import { serve } from 'https://deno.land/std@0.168.0/http/server.ts'import { HfInference } from 'https://esm.sh/@huggingface/inference@2.3.2'import { createClient } from 'jsr:@supabase/supabase-js@2'import { Database } from './types.ts'console.log('Hello from `huggingface-image-captioning` function!')const hf = new HfInference(Deno.env.get('HUGGINGFACE_ACCESS_TOKEN'))type SoRecord = Database['storage']['Tables']['objects']['Row']interface WebhookPayload { type: 'INSERT' | 'UPDATE' | 'DELETE' table: string record: SoRecord schema: 'public' old_record: null | SoRecord}serve(async (req) => { const payload: WebhookPayload = await req.json() const soRecord = payload.record const supabaseAdminClient = createClient<Database>( // Supabase API URL - env var exported by default when deployed. Deno.env.get('SUPABASE_URL') ?? '', // Supabase API SERVICE ROLE KEY - env var exported by default when deployed. Deno.env.get('SUPABASE_SERVICE_ROLE_KEY') ?? '' ) // Construct image url from storage const { data, error } = await supabaseAdminClient.storage .from(soRecord.bucket_id!) .createSignedUrl(soRecord.path_tokens!.join('/'), 60) if (error) throw error const { signedUrl } = data // Run image captioning with Huggingface const imgDesc = await hf.imageToText({ data: await (await fetch(signedUrl)).blob(), model: 'nlpconnect/vit-gpt2-image-captioning', }) // Store image caption in Database table await supabaseAdminClient .from('image_caption') .insert({ id: soRecord.id!, caption: imgDesc.generated_text }) .throwOnError() return new Response('ok')})